Minimal degree rational curves on real surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Real Rational Curves on K3 Surfaces

We provide a real analog of the Yau-Zaslow formula counting rational curves on K3 surfaces. ”But man is a fickle and disreputable creature and perhaps, like a chess-player, is interested in the process of attaining his goal rather than the goal itself.” Fyodor Dostoyevsky, Notes from the Underground.

متن کامل

Counting Curves on Rational Surfaces

In [CH3], Caporaso and Harris derive recursive formulas counting nodal plane curves of degree d and geometric genus g in the plane (through the appropriate number of fixed general points). We rephrase their arguments in the language of maps, and extend them to other rational surfaces, and other specified intersections with a divisor. As applications, (i) we count irreducible curves on Hirzebruc...

متن کامل

Rational curves on K3 surfaces

This document is based on lectures given at the 2007 NATO Advanced Study Institute on ‘Higher-Dimensional Geometry over Finite Fields’, organized at the University of Göttingen by Yuri Tschinkel, and on lectures given at the 2010 summer school ‘Arithmetic Aspects of Rational Curves’, organized at the Institut Fourier in Grenoble by Emmanuel Peyre. This work is supported in part by National Scie...

متن کامل

Rational curves of minimal degree and characterizations of Pn

In this paper we investigate complex uniruled varieties X whose rational curves of minimal degree satisfy a special property. Namely, we assume that the tangent directions to such curves at a general point x ∈ X form a linear subspace of TxX. As an application of our main result, we give a unified geometric proof of Mori’s, Wahl’s, Campana-Peternell’s and Andreatta-Wísniewski’s characterization...

متن کامل

Rational Minimal Surfaces

In this paper we investigate rational minimal surfaces { a special class of umbilic-free minimal surfaces with nite total curvature and Enneper type ends. We deene an iteration for Gauss maps and show that it can be used to produce innnitely many families of rational functions that yield rational minimal surfaces{the Schwarzian derivative plays an important role in the proof. We also investigat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2019

ISSN: 0001-8708

DOI: 10.1016/j.aim.2019.01.019